Lequan, M., Lequan, R., Maceno, G., Amiell, J., Delhaes, P. \& Hauw, C. (1985). Nouv. J. Chim. 9, 359-363.

MAC Science Co. (1997). maXus. A Computer Program for the Solution and Refinement of Crystal Structures from X-ray Diffraction Data. MAC Science Co., Ltd, Nakamachidal 3-12-1, Tsuzuki-ku. Yokohama 224, Japon.
Nonius (1997). Kappa CCD Reference Manual. Nonius BV, Delft, Les Pay-Bas.
Sueur, S., Wignacourt, J. P., Nowogrocki, G. \& Lagrenée, M. (1991). Acta Cryst. C47, 1877-1879.
Waasmaier, D. \& Kirfel, A. (1995). Acta Crvest. A51, 416-431.
Yasui, M., Hirota, M., Endo, Y., Iwasaki, F. \& Kobayashi, K. (1992). Bull. Chem. Soc. Jpn, 65, 2187-2191.

Acta Cryst. (1998). C54, 1986-1987

1-(5-Methanesulfinyl-2,2,6-trimethyl-3a,3b,4,5,6,8a-hexahydro-1,3,8-trioxacyclopenta $[a]$ inden- 5 -yl)hexan-1-ol

S. Yonezawa, ${ }^{a}$ M. Leblanc, ${ }^{a}$ A. Guesdon ${ }^{b}$ and
C. Alexandre b
${ }^{a}$ Laboratoire des Fluorures, UPRES-A 6010, Faculté des Sciences, Université du Maine, 72017 Le Mans CEDEX, France, and ${ }^{b}$ Laboratoire de Synthèse Organique, UPRES-A 6011, Faculté des Sciences, Université du Maine, 72017 Le Mans CEDEX, France. E-mail: calexan@univ-lemans.fr

(Received 17 November 1997: accepted 26 June 1998)

Abstract

The title compound, $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{~S}$, is obtained by selective reduction of the keto group of an adduct which results from a Diels-Alder reaction between a dienic lactone and an ethylenic keto-sulfoxide. The absolute configuration of the stereocentres is established.

Comment

The Diels-Alder reaction of 3,5,6-trideoxy-1,2-O-isopropylidene- α-D-glycerohepta-3,5-dienofuranose, (1), obtained from D-(+)-glucose, with 2-methylsulfinyl-oct-1-en-3-one, (2), gives a 64/36 diastereomeric mixture [1-(5-methanesulfinyl-2,2,6-trimethyl-3a,3b,4,5,6,-8a-hexahydro-1,3,8-trioxacyclopenta[a]inden-5-yl)hexan-1-ol, (3); see reaction scheme below]. The main product can be separated by liquid chromatography on silica gel and reduced selectively by LiAlH_{4} to give the title compound, 1 -(5-methanesulfinyl-2,2,6-trimethyl-3a,3b,4,5,6,8a-hexahydro-1,3,8-trioxacyclopenta $[a$ inden-5-yl)hexan- 1 -ol, (4). The synthesis does not affect the configuration of the glucosidic part of the molecule and, consequently, the known configuration of C2 and C3 was used to de-

(3)

(4)
termine the absolute configuration of the crystal. The configuration of the five other stereocentres is shown to be $1 S, 4 R, 5 S, 6 S, 7 S$ (SO, $\mathrm{C} 4, \mathrm{C} 7, \mathrm{C} 8$ and Cl 10 , respectively). This configuration results from selective reduction at Cl 0 and from an exclusive exo approach during the Diels-Alder reaction. Atoms C4, C5, C6, C7 and O5 are located in a plane due to the double bond between C 5 and C6; the deviations (\AA) from the mean plane are $-0.005,0.021,-0.005,-0.002$ and -0.009 , respectively. Selected bond distances are given in Table 1. This compound will be used as an intermediate in the total synthesis of ivanguline.

Fig. I. ORTEP plot (Johnson, 1965) of (4). For the sake of clarity. the values of the displacement parameters of the H atoms have been divided by ten. Displacement ellipsoids are plotted at the 50\% probability level.

Experimental

Recrystallization from ether gave the title compound as colourless crystals. A parallelepipedic crystal $[(100)(010)(001)]$ was chosen for X-ray analysis.

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{~S}$
$M_{r}=372.51$
Orthorhombic
$P 2_{1} 2_{1} 2_{1}$
$a=7.150(2) \AA$
$b=10.284$ (2) \AA
$c=27.726$ (2) \AA
$V=2038.8(7) \AA^{3}$
$Z=4$
$D_{x}=1.214 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Data collection
Stoe Siemens AED-2
diffractometer
$\omega-\theta / 2$ scans
Absorption correction: none
3093 measured reflections
2706 independent reflections
2038 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.017$
$\theta_{\text {max }}=27.51^{\circ}$
$h=-1 \rightarrow 9$
$k=-13 \rightarrow 13$
$l=0 \rightarrow 36$
3 standard reflections frequency: 60 min intensity decay: 10.1%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.117$
$S=1.042$
2706 reflections
279 parameters
H atoms constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1 P)^{2}\right.$ $+2.0 \mathrm{P}]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=-0.011$
$\Delta \rho_{\text {max }}=0.158 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.162 \mathrm{e}^{\AA^{-3}}$
Table 1. Selected bond lengths (\AA)

$\mathrm{S}-\mathrm{O} 2$	$1.513(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.327(4)$
$\mathrm{S}-\mathrm{C} 20$	$1.793(3)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.518(4)$
$\mathrm{S}-\mathrm{C} 8$	$1.869(3)$	$\mathrm{C} 7-\mathrm{C} 16$	$1.536(4)$
$\mathrm{O}-\mathrm{C} 2$	$1.379(4)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.570(4)$
$\mathrm{O}-\mathrm{C} 17$	$1.422(4)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.541(4)$
$\mathrm{O} 3-\mathrm{C} 3$	$1.403(4)$	$\mathrm{C} 8-\mathrm{C} 10$	$1.549(4)$
$\mathrm{O} 3-\mathrm{Cl7}$	$1.427(4)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.525(4)$
$\mathrm{O} 4-\mathrm{Cl} 10$	$1.438(3)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.528(4)$
$\mathrm{O}-\mathrm{C} 5$	$1.381(3)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.510(5)$
$\mathrm{O}-\mathrm{C} 2$	$1.442(4)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.519(5)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.539(4)$	$\mathrm{C} 14-\mathrm{C} 15$	$1.483(7)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.544(4)$	$\mathrm{C} 17-\mathrm{C} 19$	$1.479(5)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.494(4)$	$\mathrm{C} 17-\mathrm{C} 18$	$1.489(6)$
$\mathrm{C} 4-\mathrm{C} 9$	$1.520(4)$		

An $\omega-\theta / 2$ step-scan mode in N steps of 0.035° was used, with $N_{\text {min }}=37$, time per step $t_{\text {min }}=1.0 \mathrm{~s}$ and $t_{\text {max }}=4.0 \mathrm{~s}$, aperture $D=4.0 \mathrm{~mm}$, and standard reflections $228, \overline{2} 28$ and $22 \overline{8}$. A solution with all non-H atoms was found with the multisolution tangent direct methods of SHELXS86 (Sheldrick,
1990). Successive refinements and difference Fourier maps allowed the S, O and C atoms to be distinguished ($R=0.160$). H atoms were refined as rigid groups associated with their neighbours ($R=0.039$) and their displacement parameters were restrained to be equal in order to decrease the number of refined parameters.

Data collection: DIF4 (Stoe \& Cie, 1987). Cell refinement: DIF4. Data reduction: REDU4 (Stoe \& Cie, 1985). Program(s) used to solve structure: $S H E L X S 86$. Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEP (Johnson, 1965).

The authors are indebted to Dr R. Retoux for his help in the X-ray data collection.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OS1011). Services for accessing these data are described at the back of the journal.

References

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee. USA.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen. Germany.
Stoe \& Cie (1985). REDU4. Data Reduction Program. Stoe \& Cie, Darmstadt, Germany.
Stoe \& Cie (1987). DIF4. Diffractometer Control Program. Stoe \& Cie, Darmstadt, Germany.

Acta Cryst. (1998). C54, 1987-1990

$N^{4}, 5$-Dimethyl-2'-deoxycytidine

Gerald F. Audette, ${ }^{a}$ Sashi V. P. Kumar, ${ }^{b}$ Sagar V. Gupta b and J. Wilson Quail ${ }^{c}$

${ }^{a}$ Department of Biochemistry; University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E5, ${ }^{\text {b }}$ Department of Veterinary Physiological Sciences, University of Saskatchewan, Saskatoon, Saskatchewian, Canada S7N 5B4, and 'Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5C9. E-mail:
quail@sask.usask.ca
(Received 16 March 1998; accepted 8 June 1998)

Abstract

In the title molecule $\left(\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4}\right)$ the pyrimidine ring adopts the anticlinal $(-a c)$ conformation $[\chi=$ $\left.245.10(18)^{\circ}\right]$. The deoxyribose sugar ring has the $\mathrm{C} 2^{\prime}-$ endo $\left({ }^{2} E\right)$ envelope conformation. The pseudorotational parameters of the deoxyribose sugar ring are $P=$ $168.92(2)^{\circ}$ and $\tau_{m}=33.86(2)^{\circ}$. The exocyclic side chain at $\mathrm{C} 5^{\prime}$ has the g^{+}conformation $\left[\gamma=55.0(2)^{\circ}\right]$.

